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Abstract—An analytical model for the post-buckling behavior of multiply delaminated beams or
long plates under cylindrical bending is presented. The model comprises partial non-linear differ-
ential equations based on the Von Karman kinematic approach. A special variable separation,
based on global and local functions derived from the eigenfunction procedure, is employed to obtain
the algebraic non-linear system, which is solved by the Newton—Raphson method and a modified
“arc-length” procedure. Two illustrative examples are provided.

1. INTRODUCTION

One of the most serious problems associated with laminated composites is formation of
multiple-delamination zones under low-velocity impact loads. It may lead to drastic
deterioration in load capacity, initiated by local buckling and possibly followed by crack
propagation and total failure under service load levels. Local buckling in itself does not
necessarily imply the ultimate load, and usually the laminate is capable of carrying on in a
post-buckling mode under higher loading. The load capacity depends heavily on the geo-
metric interrelationship of the delaminations.

This prospect detracts from the high potential of the composites, and indicates the
need for extensive research. Accordingly it has become, over the last decade, the subject of
numerous publications. Most of the earlier works deal with an idealized case of single
delamination in bifurcation classical buckling load (Chai et al., 1981; Yin et al., 1984;
Simitses et al., 1985 ; Shivakumar and Whitcomb, 1985 ; Sheinman ez a/., 1989, and others).
Yin (1986) and Chai et al. (1981) also deal with the post-buckling shape, but in terms of
local delamination growth rather than of geometrical non-linear analysis. Sheinman and
Soffer (1991) presented a post-buckling analysis for a composite with a single delamination,
based on the geometrical model employed by Simitses e al. (1985) and on a finite-difference
procedure, with the conclusion that the bifurcation point is indeed only an indication of
the overall behavior and post-buckling analysis is called for.

A more realistic situation of multiply delaminated laminates, is considered in very few
publications. Bolotin ez al. (1980) solved the eigenproblem for a compressed simply-
supported isotropic rod, centrally delaminated by a number of equally-spanned and spaced
cracks. A non-linear finite-element model for the response of multiply delaminated panels
under compression was developed by Chang and Kutlu (1989), with the result shown for
a case of two delaminations in decoupled behavior, and no parametric study of the mutual
delaminations is presented.

Recently, Larsson (1991) investigated the interaction of buckled multiply delaminated
layers, concentrating on crack growth rather than on the mutual behavior of the layers in
the post-buckling stage. Adan (1991) developed an analytical model for buckling problem
of multiply-delaminated composite beams, with an interesting parametric study of the effect
of size and relative location of the cracks.
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It is apparent that the problem of multiple delaminations under impact is still open
for exploration. The purpose of the present work is to investigate the effect of the mutual
configuration of multiple delaminations on the overall non-linear behavior. Due to its
complexity, the study is confined to the post-buckling behavior without reference to the
effects of contact constraints and crack growth which, although physically an integral part
of the overall pattern, can be isolated under certain conditions. The effect of contact
constraints is studied separately by Adan et al. (1993) and will be incorporated in the
present model in the future.

The one-dimensional model employed by Simitses er al. (1985) is extended to multiple
delaminations [see Adan (1991)]. The cracks referred to as “delaminations” are assumed
to exist before loading and not to grow under loading. The beam is subjected to arbitrary
axial and transverse loading. The delaminations divide the beam into a sequence of regions
each of which is subject to non-linear equilibrium equations. For the crack tips, displacement
and force compatibility equations are imposed and finally the boundary conditions are
specified. Thus, the system is composed of partial non-linear differential equations in
terms of the transverse and axial displacements. For insight into the contribution of each
parameter, a solution based on variable separation via function series, rather than a
numerical procedure like finite differences or finite elements, was chosen. The series, com-
posed of global and local functions derived from the eigenfunction of the delaminated beam
and additional functions, satisfies the essential continuity conditions. These functions, which
lead to the compatibility force condition and consequently ensure monotonic convergence,
yield an algebraic non-linear system characterized by limit point behavior, which is solved
by the Newton—Raphson method and a modified “arc-length” procedure.

2. ANALYTICAL FORMULATION

Kinematics

A laminated composite strip is assumed to be delaminated prior to loading by an
arbitrary number of through-the-width cracks and subjected to unidirectional in-plane
pressure as shown in Fig. 1(a). The delamination cracks divide the strip into m geometrically
continuous regions, referred to as sublaminates [Fig. 1(b)]. A one-dimensional analytical
model is employed based on the one-dimensional beam theory for small width-to-length
ratios, and the cylindrical bending theory for large ones.

Assuming a small thickness-to-span (and to delamination length) ratio at which the
transverse shear effect is negligible, and using the Kirchhoff-Love hypothesis, we have for
each region i:
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Fig. 1. Geometry, loading and sign convention.
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U(xs Z) = iu(x’ izref) - (Z_ [Zref)iw,x(xa Zref)s

W(X,Z) = iw(x, izref)a i= 1729"-’m (1)

where ‘u(x, ‘z,r) and 'w(x, ‘z.¢) are the axial and transverse displacements of the region’s
reference surface, 'z, its z-coordinate and ( ), denotes differentiation with respect to the
x-coordinate. Under the kinematic model, the various sublaminates may be interconnected
by straight lines perpendicular to the reference axes, referred to as joints, retaining their
rectilinearity and perpendicularity upon deformation. Thus the whole structure is modeled
as a net of members (reference axes) and joints. For illustration purposes, characteristic
partitions of the cross-section by one and two delaminations are shown in Fig. 2(a),
with their schematical member-joint representation shown in Fig. 2(b). The theoretical
singularity at the crack tips, and the plasticity effect which may occur, are not taken into
account. At moderately small rotation, the Von Karman strain and change of curvature of
the reference surface associated with the displacement field («, w) and imperfection function
‘w, are :

igxx (xa izref) = iu,x + %iw,x (iw.x + 2iw,x)’

ikxx (xs inef) = _iw,xX' (2)

Constitutive equations
Under the one-dimensional beam theory (small width-to-span ratio), the force—strain
relation can be reduced to

(a) (b)

Fig. 2. Various configurations of one and two cracks—schematic representation.
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where ‘N,., ‘M, respectively are the axial force and bending moment of region i, b strip
width and Q;, the laminate transformed reduced stiffnesses.

When the width-to-span ratio is large, the lateral stiffness parameters affect the uni-
directional terms and the cylindrical bending theory must be applied. In that case, only
g, = 0, k,, = 0, are imposed and the constitutive equations read :

iN\;\' Ay A 16 ‘B, i iBl(x is,\ ¢
‘.N.\'}' ‘A,» 'Bi, ‘B Ve 5
lvM,\.\ B ’DH ID\() ,k\'\‘ (V)
M., symm. "D Ly
with the lateral forces defined as:
{'N”} . |:1A21 ‘Ay; ‘Byy ‘B i“/’n- (6)
iM\'_\' [BZI iBZZ iD?I iD22 ik,\i\' .
'k

For the one-dimensional case, expressing the strain in terms of the axial force and sub-
stituting it for the bending moment [see Sheinman (1989)], we have :

] i o i il
’N,\,\ ='A4 1 Ili"x,\'+’Bl l,l‘,\:\v

[M'\“’ = ibll’NAA +’vdlllk\:\s (7)
where
g = DA B (8)
A Aee Al

id,, =D, — (,IB,'”)ZLA""LT?I,Q‘llfi,l”’i_,(;‘i")z,i‘q” (9)
Ay Age—(A16)

It should be noted that while ‘A4 ,, and ' B, are functions of the z-coordinate alone, the
bending coefficients ‘b, and ‘d,, are functions of the lateral direction as well, expressed by
A,e, Aee and B . It can also be seen that the cylindrical bending stiffness d,, is always
smaller compared with its beam theory counterpart. Finally, since the above procedure is
not consistent (the terms representing shear and torsion [eqn (5)] are not zero along the
edges of the beam) the axial-bending coupling coefficient differs from the bending axial one
(asymmetry). However, from the engineering point of view, the results are applicable and
close to those of two-dimensional theory [see Soffer (1989)].

Equilibrium equations
Resorting to the variational principle, the following non-linear equations are obtained
for each region i:
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iNxx,x = - iqx;
‘ XX, XX + [iNXX (iw,x + iw,x)],x = - iqz’ (10)

where ¢, and ¢, (function of x) are the external axial and transverse loadings, respectively.
The boundary conditions are as follows:
iu - (izsup - izref)w,x izl() = iu* or iN*;

WY =W or Mo+ No W iZ0 ='SY,

i x=1I

w,x x=0= iwtv or iMxx_i xx(izsup_izref)’;:lo = iM*, (11)

where ‘u*, ‘w* and ‘w* are the external applied displacements and ‘N*, 'S* and ‘M* are the
external applied forces at the boundaries.

At the crack tips the following displacement and rotation compatibility equations (per
joint) are imposed [see Sheinman and Soffer (1991)]:

1 1 1 2 2 2
u+ Zyef w,x = u+ Zref w,x == nu+"zrefnw,xa
w=lw=--="w,
1 2 I . (12)
w,x - w,x - - w,x>

and the following force compatibility equations:
Y N =0,
k=1
Z (Mxx,x +Nxx(w,x + W,x))k = 09
k=1
Z (Mxx _Nxxzref)k = 0’ (13)
k=1
where 7 is the number of members branching from the joint.

3. SOLUTION PROCEDURE
The non-linear behavior can be found by shifting the reference surface in each sub-
laminate to 'z = ‘z+'e, such that the equation
ibll(izref) =09 i= 1,2,...,m, (14)
is satisfied, z being the z-coordinate of the median axis and ‘e an eccentricity given by :

‘e=—'b,,(2)/'4,,(2). (15)

The non-linear partial differential equilibrium [eqn (10)], compatibility [eqns (12), (13)]
and boundary [eqn (11)] equations are first written in terms of displacements and then
replaced by a sequence of algebraic non-linear ones by discretization of the unknown
displacement functions into truncated known series. The characteristic eigenfunctions of
the buckling equation of a multiply delaminated structure [see Adan et al. (1993)] are taken
as a natural basis for the series. The jth eigenfunction for region i in the axial and transverse
directions, respectively, can be written as:

‘e, (§) = [C+'Cy8;,
F(©) =['C3+'Cul+'Cssin (BE) +'Cq cos (BE)];, (16)
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where & = x/l is the non-dimensional axial coordinate, § and C, are the characteristic
parameters, determined through the boundary condition at ¢ = 0 and £ = 1. In the non-
linear analysis, the axial and transverse displacements are coupled through the non-linear
term of eqn (2), and the functions of eqns (16) do not satisfy the force conditions. Accord-
ingly, additional non-linear functions should be introduced for the displacement. In the
absence of consistent analytical means for finding such compatible functions, a systematic
guesswork procedure is resorted to. A schematic description of the characteristic global
and local approach displacement functions is given in Fig. 3 for a clamped-simply-supported
delaminated beam model. The transverse displacement is represented in the figure by the
mode shapes, and the axial displacement by its ordinates. Figure 3(a) shows the delaminated
model; 3(b) the global buckling eigenfunctions of the axial (‘¢;) and transverse ('f;) dis-
placements ; 3(c) the local transverse functions (likewise in terms of 'f;) subject to the non-
linear force continuity conditions; 3(d) the global axial displacements; 3(e) the local axial
displacements. The local functions are defined separately for each region, with the same
sequence numbering as for the global ones. Thus the axial, transverse and imperfection
displacements can be written as:

WO = Y u'gO+ Y wie ),
WO = X w Q.
LGE WA a7

i=1

where u;, w; and w, are the unknown scalars written in global form; Nu, Nw are the
truncated number of the u- and w-series functions ; ‘e;, which contains only global functions,
is the axial component of the buckling eigenfunctions; g; is composed of global linear
functions ‘go(&) = ¢ for a moving support on the right-hand side or = 1~ ¢ for a moving

(a) =2 )
L B
g =3 FAY
(b) : m:
i Mode shapes e
} ]
(c)
Local 'f}
(d)
‘g, Global ‘gj
(e)
> | - |
Local 'g.

Fig. 3. Global and local displacement approximation functions: (a) geometrical model; (b) buckling
mode functions; (c) transverse displacement local functions; (d) axial displacement global func-
tions ; () axial displacement local functions.
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support on the left-hand side, and of global and local non-linear functions derived from
the Airy stress function; f; is composed of global functions which are the transverse
components of the buckling eigenfunctions and of the local transverse functions.

The global functions of u and w, by their definitions, automatically satisfy the essential
continuity and boundary conditions. For the local functions, a strong form ensuring that
each one of them satisfies exactly the essential conditions, is adopted. Thus, while the
displacement continuity and boundary conditions are satisfied directly for each single
function, the force condition is accommodated gradually in a convergence procedure with
respect to the number of truncated series functions.

The additional global and local functions for axial displacement (‘g;), which are derived
through integration of the Airy stress function [see Sheinman et al. (1993)], can be written,
for any i-region, in terms of the global ¢-coordinate, as:

i . fr Iél . gﬁiél é iél )]_ ajyj 122 xi &
gj(é) é % l:Sln <ajiér_i€])+yj cos <CZ] IC iél iﬁr'—iél (25 661)-‘_ aj’

= (coso,—1)/(siny;—a), ‘& < EKYE, (18)

where ‘€, and ‘¢, are the coordinates of region i for the local functions, for the global
functions, ‘¢, = 0, ‘¢, = 1 and o; are the characteristic roots derived from:

sm% (tan‘; 9‘21) -0 (19)

Two different kinds of displacement families are observed: the symmetric function [see
Sheinman et al. (1993)] for which «; is determined from tan (o;/2) — (¢;/2) = 0,7 = 2,4,6,...,
with y; # 0, and the asymmetric ones for

o = (j+1)7 determined from sin%l =0 withy, =0.

It should be noted that ‘g; is defined for one region at a time (for all other regions
‘g; = 0). Thus, it is obvious from the essential displacement conditions that g; should be
zero at the boundaries ¢ = ‘¢, and ¢ = ‘¢,. The integration coefficient y;/o; [see eqn (18)]
zeros the function at ¢ = ‘¢, The value at the right-hand boundary is zero for the symmetric
functions [Fig. 4(a)] and non-zero for the asymmetric ones [Fig. 4(b)]. This problem can

(a) c)

_Aﬁnﬂl[ﬂﬂﬂmm_d__mmﬂmmﬂﬂﬂﬂﬂﬂm

9
9% g, 'q,
ig6 igs |gs

Fig. 4. Axial displacement approximation functions g; (a) symmetric; (b) asymmetric; (c) anti-
symmetric.
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be resolved, without detracting from its generality, by omitting the linear terms from the
asymmetric formula, thus:

'g.(¢) = sin ((A/+ 1)n;§1§él), j=1,3,5.... (20)

as shown in Fig. 4(c).
The local transverse displacement functions are chosen to be of the same type as the
global ones, namely :

< &<

(E) = ['Cﬁfcht‘ 2 4iCssin (fﬁ,fil)#q cos ("[)’,Eﬁiﬂ S
- Cr ™ Gl 5y Gy Cr— ¢l /
(21

Here, ‘ff and 'C, are determined through the end conditions of the local region i. Since the

procedure is designed so that the local functions in region i do not affect any other region,

conditions of the clamped-clamped type are introduced for any internal region. For the

end regions the same given global boundary conditions are imposed on the local functions.
Equation (21) can be rewritten in compact form as

1(&) = [Ca+'Col+"Cssin (BE) +'Cy 08 (fO)], (22)
with
‘B="BICE~"E),
iC_V} = [Cz *'CA’fl/(ifr*’@),
ICA ='C4/(¢:—"4),
'Cs ='Cscos (f[;iél) +'Cysin (lﬁi51)~
'Co= —'Cssin(f'E)+'Cyeos (fE). (23)

The above procedure yields a non-linear algebraic system, characterized by limit-point
behavior involving snap-buckling, rather than by bifurcation points. Accordingly, a
modified “arc-length” method [see Riks (1979) and Adan (1991)] and the Newton-
Raphson procedure are applied to solve the system tor a given number of functions in the
truncated series.

4. NUMERICAL RESULTS AND DISCUSSION

A general computer code NAMDL (Nonlinear Analysis of Multiply Delaminated
Laminates) was developed for the procedure outlined above. It is suitable for laminated
beams with an arbitrary number of delaminations and any stacking combination. A realistic
picture has to include contact constraints, but as the appropriate algorithm is still in the
basic stage of investigation [see Adan er al. (1993)], the present analysis is confined to
situations not involving the contact effect which can in some cases be tackled with the aid
of appropriate imperfection shapes. Examples of simply-supported beams under axial
compression are considered below.

The first example involving a single delamination, illustrates the proposed approach
versus the finite-difference method by Sheinman and Soffer (1991). The beam data are:
span / =4.0 m; width » = 0.04 m; total depth h = 0.08 m, thickness of delaminated
upper layer 7, = h/8 = 0.01 m; delamination at midspan d, = 0 (see Fig. 1); delamina-
tion length 2a, = 3//8 = 1.50 m; modulus of elasticity E =210 GPa N m~?, Poisson’s
ratio v = 0.3. The initial imperfection was taken, in order to obviate the contact effect, as
Ww(&) = —0.0001 sin & over the entire beam span. For the transverse displacement 8 global



Post-buckling analysis 1297

and 6 local functions (see Fig. 5) were taken into account. Similarity of some of the local
and global shapes [such as 'f| and ‘f,, 'f; and f},, 'f, and ‘f;, (Fig. 5)] is confined to the
local region, the global functions reflect the bending of the structure as a whole. The initial
imperfection was applied through the first and second global functions.

For the axial displacement 18 functions were considered as follows: 4 global func-
tions—one linear g,(£) = ¢ and three asymmetric [eqn (20)], and 14 local functions (sym-
metric and asymmetric for regions 1 and 4 respectively, [see Fig. (6)], seven asymmetric
functions for the buckled stretch i = 2 and three asymmetric ones for region 3). The large
number of approximated local functions in the buckled stretch is needed for satisfying the
non-linear compatibility equations. In the regions of symmetric bending i =2 and i = 3,
only the asymmetric axial functions are relevant. The load-deflection curves for all regions
(i), are plotted in Fig. (6) versus finite difference method. In this figure N, is the axial load
of a perfect undelaminated structure. At N = N/N,. = 0.42 local buckling of region 2,
followed by global bending is observed. With further increase of the axial load, the behavior
becomes highly non-linear, asymptotic to the ultimate load capacity N = 0.76. The overall
behavior, composed of local buckling followed by global bending, is expressed in the plots
of w; and u; shown in Figs 7(a) and 7(b), respectively, with the solid lines representing
global functions and the dashed lines, local functions. It is seen that only seven functions,
four global and three local, are affected. 'f, describes the overall behavior while the others

Global functions

(buckling modes) Local functions

Fig. 5. Transverse displacement approximation functions for numerical example 1 (single delami-
nation).
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contribute to the local ones. The contribution of the wavelength functions f; and f to the
behavior [see Fig. 7(a)], are the most predominant, and the higher the load level, the higher
wavelength functions are (/5. f10. f4. f11). In the zoom area it is clearly seen that the initial
buckling behavior (at N = 0.442) is affected by f, and f, only. With further increase of the
axial load, additional local functions are affected. At N = 0.52 global bending is observed.
From Fig. 7(b) one can see that the linear axial function, by which the axial load is dictated,
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Fig. 7. Variation of coefficients of approximation functions with respect to load level : (a) transverse
displacement w; ; (b) axial displacement ;.
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Fig. 8. Load-displacement curve of anisotropic beam with single delamination.

is the dominant parameter up to the local buckling point, beyond which non-linear behavior
sets in. (Note that this function is scaled by 10 for comparison with the effect of the
functions.) In the post-buckling area g, and g,, become pronounced. Nonlinear com-
patibility of the force equations is satisfied by incorporating the local functions. Although
their effect is not as high as that of the others, without considering them the solution does
not converge.

The effect of cylindrical buckling was studied on the anisotropic delaminated beam
reproduced from Sheinman and Soffer (1991) and described in Fig. 8. The anisotropic
properties are given only for region i = 3 for which 4,4 = B, = D¢ = 0 due to its balanced
sequence. Thus the constitutive relations of bending theory [eqn (3)] and cylindrical
bending theory [eqns (8) and (9)] are the same. For the lateral direction, another type:
by, = (4" 'B),,d;y = D;—(BA™'B),, was considered. For comparison, a more accurate
model [see Soffer (1989)] of plate elements was run using the general-purpose finite element
NASTRAN code. The results of the present one-dimensional algorithm, with the lateral
effect taken into account through d,,, are the same as those of the NASTRAN two-
dimensional model.

The second example is concerned with a multiply delaminated beam (two cracks).
Data: simply-supported boundary conditions, span /= 4.0 m, thickness 4 = 0.08 m,
modulus of elasticity E = 210 GPa N m~?, Poisson’s ratio v = 0.3, delamination length
2a, = 2a, = 1.5 m, delamination depth (see Fig. 1) ¢, =0.01 m, ¢, = 0.02 m, location
d, = 0,d, = 0.75 m. This location was chosen so as to yield the minimum classical buckling
load, the right-hand boundary of the upper sublaminate is connected to the most flexible
point of its lower counterpart [see Adan ez al. (1993)]. In this case 25 functions were used
for transverse displacement and 37 for axial displacement. The large number of terms was
necessary for the asymmetric bending due to the larger number of segments in the model.
Here, the imperfection was taken only in the upper sublaminate (i = 2) with amplitude
~1.107* m. The axial load versus transverse displacement for three different points (4, B
and C) is given in Fig. 9. Solution convergence was slow because of the need to satisfy the
non-linear compatibility requirement in regions 2 and 4 (at the ends of which the Gibbs
phenomenon was observed). At N = N/Nr = 0.406 the upper sublaminate buckled (as
against 0.442 for a single crack). Increase of the axial load caused downward bending and
the ultimate load capacity is N = 0.7 (as against N = 0.77 for a single crack). Somewhere
around N = 0.58 the second sublaminate buckles and the total capacity is reduced from
0.77 to 0.7.

5. CONCLUSION

Post-buckling analysis of a beam with arbitrary multiple delaminations is presented,
using a one-dimensional model. The delaminations divide the beam into regions, for each
of which non-linear equilibrium equations based on the Von Karman kinematic approach
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Fig. 9. Load -displacement curves for beam with two delaminations.

are applied. In addition, displacement and force continuity conditions are imposed at the
crack tips. The partial differential equations are converted into a sequence of algebraic
ones by variable separation, using global and local functions. The most difficult problem,
satisfying non-linear force compatibility at the crack tips, was successfully solved by intro-
ducing special local functions in the transverse and axial directions. Although large numbers
of functions are needed to complete the solution, convergence is much better than for the
numerical finite-difference or finite-element methods. The theory and solution procedure
are general and suitable for investigating the effect of multiple delaminations on the overall
non-linear behavior. The classical buckling load provides only an indication of the picture,
and post-buckling analysis is called for. The procedure permits inclusion of the contact
constraints for more realistic delamination cases.
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